Power-Aware Testing for Low-Power VLSI Circuits

Xiaoqing Wen Kyushu Institute of Technology

Background

Outline

1 Test Power Problems

2 Power Analysis for Power-Aware Test

Bower Management for Power-Aware Test

4 Future Research Topics

<u>Outline</u>

1 Test Power Problems

2 Power Analysis for Power-Aware Test

3 Power Management for Power-Aware Test

4 Future Research Topics

Impact of Test Power in At-Speed Scan Testing (LOC)

Test Power Problems: P1 ~ P4

Power-Aware Test

<u>Outline</u>

Test Power Problems

Power Analysis for Power-Aware Test

3 Power Management for Power-Aware Test

4 Future Research Topics

Ideal vs. Reality

Power Estimation Metrics

Global Shift Power Analysis for Excessive Heat (P1)

Estimating Accumulative Impact of Shift Power

Weighted_Transitions = **>** (Scan_Chain_Length - Transition_Position)

Local Shift Power Analysis for Shift Failures (P2)

Estimating Inst. Impact of Shift Power on Clock

1 Test Power Problems

2 Power Analysis for Power-Aware Test

Bower Management for Power-Aware Test

4 Future Research Topics

© X. WEN 2016. All Rights Reserved.

ATPG Technique for Capture-Failure-Safety

Rescue & Mask

For Capture-Failure-Safety: *Example*

For Capture-Failure-Safety: Results (Commercial ATPG)

Circuit	# of Vectors	% Risky Vectors	FC (%)	BCE (%)	SDQL	CPU (Sec.)	
b17	1,568	3.8	82.8	39.3	1358.4	491	
b18	2,592	1.9	78.0	46.6	1292.8	1,869	
b19	3,776	0.2	76.0	45.6	3329.1	2,196	
b20	1,280	2.2	80.9	43.1	282.3	264	
b21	1,330	3.9	83.1	42.9	187.8	224	
b22	1,444	13.0	81.4	44.2	255.7	533	

Risky test vectors (i.e., vectors with risky paths) do exist.

- Metrics for assessing test quality:
 - FC: Fault Coverage
 - **BCE**: Bridge Coverage Estimate
 - SDQL: Small Delay Quality Level

For Capture-Failure-Safety: *Results (Proposed ATPG)*

Circuit	∆# of Vectors (%)	% Risky Vectors	∆FC (%)	<u> АВСЕ</u> (%)	ASDQL (%)	CPU (Sec.)
b17	0.20	0	0.14	-0.45	-2.02	683
b18	1.45	0	0.06	-0.41	-0.17	2,931
b19	0.15	0	0.03	-0.07	-0.65	3,229
b20	0.21	0	0.08	+1.86	+0.63	532
b21	0.17	0	0.05	-1.10	-0.98	394
b22	0.30	0	0.11	-0.68	-2.03	1,150

Capture-failure-safety is guaranteed.

- Impact on and test data volume is insignificant.
- Impact on test quality (FC, BCE, SDQL) is negligible.

Rescue & Mask & Reduction

Example (1/2)

Example (2/2)

(X. Wen, et al., Proc. ATS, 2015)

Results (Commercial ATPG)

	# of	# of	Max.			ATPG (w/LCP)						
Circuit	Gates	FFs	Path Length	# of Vectors	FC (%)	BCE (%)	SDQL	# Risky Paths	Ave. WSAcp	CPU (Sec.)	∆# of Vectors (%)	# Risky Paths
<i>b</i> 17	32326	1415	34	1175	70.1	67.2	16.3	31	167	674	141.2	68
b18	114621	3320	47	2428	63.6	64.8	198.9	172	400	5901	116.2	572
b19	231320	6642	68	3327	64.6	64.9	290.0	230	425	8175	182.3	809
b20	20226	490	45	1896	92.9	59.2	115.1	0	420	169	59.4	2
b21	20571	490	44	1870	93.2	58.9	134.7	0	573	139	55.5	4
<i>b22</i>	29951	735	50	2303	93.7	63.8	139.4	83	644	483	39.3	120

Test data inflation is large.

Risks of capture failures remain even with LCP-ATPG vectors.

Results (Proposed ATPG)

	Proposed ATPG											
Circuit	Ave. % of	P-II Ave. Rescue	Ave. % of	P-III Ave. % of	∆# of Vectors	ΔFC	ABCE	∆SDQL	# Risky Paths	# Risky Paths	<u>Л</u> Аve. WSAcp	CPU
	RPI X-Bits	Rate (%)	Masked Res. Bits	CPI X-Bits	(%)	(%)	(%)	(%)	(initial)	(final)	(%)	(Sec.)
<i>b</i> 17	32.3	0	78.9	45.6	4.7	0.1	0.1	-0.9	38	0	-8.4	982
b18	17.9	0	37.0	53.7	4.2	0.0	0.5	-0.1	335	0	-23.8	7078
b19	32.2	15.9	15.6	22.5	3.6	0.0	0.3	0.3	149	0	-14.8	14079
b20	N/A	N/A	N/A	39.5	8.3	0.0	1.2	-0.1	0	0	-15.0	271
b21	N/A	N/A	N/A	35.8	4.9	0.0	1.2	-0.5	0	0	-0.9	149
b22	16.1	0	25.7	36.1	12.6	0.0	1.2	-1.0	210	0	-18.5	379
Ave.	24.6	4.0	39.3	38.8	6.4	0.0	0.8	-0.4	122	0	-13.6	\nearrow

Test data inflation is very small.

- Impact on test quality (FC, BCE, SDQL) is negligible.
- Capture-failure-safety is guaranteed.
- Clock stretch is significantly reduced.

<u>Outline</u>

1 Test Power Problems

2 Power Analysis for Power-Aware Test

3 Power Management for Power-Aware Test

4 Future Research Topics

Topic #1: GPU-Based Electrical-Level Test Power Analysis

• Which test vector is test-power-risky ?

• What is the problem (P1~P4) ?

• Where is the problem ?

Full-Timing Electrical-Level Test Power Analysis Needed

Topic #2: Advanced Test Power Management

Right-Capture-Power Test Generation: Concept

Summary

THANK YOU

Let us make LSI test cool.

© X. WEN 2016. All Rights Reserved.