Low-Power Testing for Low-Power Devices

Xiaoqing Wen Kyushu Institute of Technology wen@cse.kyutech.ac.jp

Critical Elements in IC Industry

Area * Performance * Power

Basic Message

<u>Outline</u>

1. Risk of Low-Power LSI Circuits in Testing 2. Basic Strategy to Test Power Reduction **3. Shift Power Reduction 4. Capture Power Reduction 5. New Research Opportunities** 6. Summary

<u>Outline</u>

1. Risk of Low-Power LSI Circuits in Testing

2. Basic Strategy to Test Power Reduction

3. Shift Power Reduction

4. Capture Power Reduction

5. New Research Opportunities

5. Summary

CMOS Power and Its Trend

Power-Affecting Factors

Example of Low-Power Design

Extremely Low Functional Power Achieved

© X. WEN 2010. All Rights Reserved.

General Flow of LSI Testing

Determine Test Power

Shift Power and Capture Power

Impact of Test Power in At-Speed Scan-Based LSI Testing

© X. WEN 2010. All Rights Reserved.

<u>Outline</u>

1. Risk of Low-Power LSI Circuits in Testing 2. Basic Strategy to Test Power Reduction 3. Shift Power Reduction 라. Capture Power Reduction 5. New Research Opportunities 5. Summary

2. Basic Strategy to Test Power Reduction

Shift Power and Capture Power

- → Shifting a pattern, even a functional one, may cause heavy switching.
- → *IR-drop may be worse in shift mode than in capture mode.*
- → All test vectors may have the shift power problem.
- Slow shift frequencies help reduce heat impact but not clock skew.
- Oircuit / clock change has no impact on ATPG, time, size, and coverage.
- Only scan chains need to be considered as sensitized paths.

- → The impact of capture power depends on sensitized paths.
- → Reducing capture power may be needed to avoid yield loss.
- → Increasing capture power may help to improve test quality.
- Circuit / clock change may impact ATPG, time, size, and coverage.
- Capture power is highly dependent on the content of a pattern.
- > Power management circuitry can be used for capture power reduction.
- → A small number of test vectors suffers from the capture power problem.

2. Basic Strategy to Test Power Reduction

Integrated Reduction of Both Shift and Capture Power

Type of Solution Solution Fard: Test Data Manipulation

© X. WEN 2010. All Rights Reserved.

<u>Outline</u>

1. Risk of Low-Power LSI Circuits in Testing 2. Basic Strategy to Test Power Reduction **3. Shift Power Reduction** 라. Capture Power Reduction 5. New Research Opportunities 5. Summary

3. Shift Power Reduction

3. Shift Power Reduction (SOFT)

Low-Shift-Power X-Filling

3. Shift Power Reduction (Hard)

<u>Outline</u>

1. Risk of Low-Power LSI Circuits in Testing 2. Basic Strategy to Test Power Reduction 3. Shift Power Reduction **4. Capture Power Reduction** 5. New Research Opportunities 5. Summary

4. Capture Power Reduction

4. Capture Power Reduction

Basic Idea of Capture Power Reduction

The In-ATPG Approach

The Post-Test-Generation Approach

Easy to implement. / No test data increase.

Example of Test Relaxation

(90nm process / 1.2V / 50K gates / 2.5% VDD IR-drop budget)

Example of Low-Power-X-Filling

© X. WEN 2010. All Rights Reserved.

Effect of Low-Capture-Power X-Filling

Industrial Circuit

(90nm process / 1.2V / 50K gates / 2.5% VDD IR-drop budget)

4. Capture Power Reduction

Extension to Compressed Scan Testing (Combinational)

Combinational Circuit Model

4. Capture Power Reduction

Extension to Compressed Scan Testing (Sequential)

<u>Outline</u>

1. Risk of Low-Power LSI Circuits in Testing 2. Basic Strategy to Test Power Reduction 3. Shift Power Reduction 라. Capture Power Reduction **5. New Research Opportunities** 5. Summary

Where Are We Now ?

- ① The test power problem has become real and severe in industry.
- **②** Test power has been separated into shift power and capture power.
- **③** Simple metrics developed for test power analysis, ex. WSA.
- **④** Solutions developed for reducing average shift power.
- **Solutions developed for reducing peak capture power.**

Mission Accomplished ?

The Answer

© X. WEN 2010. All Rights Reserved.

Low-Power ≠ Power-Safety

Gold Rush Goes On

- **①** Fast and accurate vector-based test power safety checking
- **②** Mitigating the clock-skew impact of shift power
- **③** Pinpoint capture power management
- **④** Solution-independent migration framework for test compression
- **IP development with predefined low-power test data / infrastructure**
- **6** High-quality low-shift-power & low-capture-power logic BIST
- Power-safe 3D testing

More Gold Ahead

5. New Research Opportunity --- 1

Fast and Accurate Test Power Impact Analysis

5. New Research Opportunity --- 3

Pinpoint Capture Power Management

<u>Outline</u>

1. Risk of Low-Power LSI Circuits in Testing 2. Basic Strategy to Test Power Reduction 3. Shift Power Reduction 라. Capture Power Reduction 5. New Research Opportunities 6. Summary

6. Summary **Basic Message** Functional Power (1x) \neq Test Power (2x~5x) **Excessive Test Power** \longrightarrow **Test-Induced Yield Loss** Low-power LSI circuits are at risk in testing ! ow - Power .ow - Power Design Test

THANK YOU

Let us make LSI testing "cool ".

© X. WEN 2010. All Rights Reserved.